
BULETINUL ŞTIINŢIFIC al Universităţii “POLITEHNICA” din Timişoara, România,
Seria AUTOMATICĂ ŞI CALCULATOARE

SCIENTIFIC BULLETIN of The “POLITEHNICA” University of Timişoara, Romania,
Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE, Vol. 58 (72), No. 1, 20vv

1

Native Developer Toolbox Library for Sparse Fuzzy Rule Based System

Zoltán Krizsán
*
, Szilveszter Kovács

*
and Dong Hwa Kim

**

* Department of Information Technology, University of Miskolc, Miskolc-Egyetemváros, H-3515, Hungary
krizsan@iit.uni-miskolc.hu, szkovacs@iit.uni-miskolc.hu

** Department of Electronic and Control Engineering, Hanbat National University, 16-1 Duckmyong dong Yuseong gu Daejeon, South
Korea 305-719. kimdh@hanbat.ac.kr

Abstract – Direct application of classical fuzzy reasoning

methods for complex real world tasks are facing the

problem of the rule base size. One solution for avoiding

the exponentially growing rule base is the adaptation of

sparse fuzzy rule-base knowledge representation and the

fuzzy rule interpolation methodology. There are

numerous implementations of the classical fuzzy

reasoning methods can be found on public Internet

sources as software products, but there is a shortage of

publicly available fuzzy rule interpolation software

products. One exception is the publicly available Fuzzy

Rule Interpolation Toolbox for Matlab introduced and

developed by Johanyák et. al. That special Matlab

Toolbox is perfect for research purpose but it is hard to

use in real-time application environment. In this paper,

we examine the existing FRI methods then clarify a set of

common criteria. According to these theoretical demands

some practical requirements of the framework structure

are defined. Finally a short introduction of the structure

and the usage of the Fuzzy Rule Interpolation Developer

Toolbox Library are shown. The Developer Toolbox

Library provides an efficient way for developing real-time

applications of incomplete fuzzy rule base models. The

library supports interfaces for most of the popular

programming languages.

Keywords: Sparse Fuzzy system, Fuzzy Rule Interpolation

Developer Toolbox Library.

I. Introduction

One of the main practical benefits of the fuzzy system
applications is the rule-based knowledge representation. It
is quite straightforward to implement a priory heuristic
knowledge in rule form. On the other hand classical fuzzy
reasoning methods, like the Zadeh-Mamdani-Larsen
Compositional Rule of Inference (CRI) (Zadeh [1])
(Mamdani [2]) (Larsen [3]) or the Takagi-Sugeno fuzzy
inference (Sugeno [4], Takagi-Sugeno [5]) require
complete rule-base definition, i.e. the full coverage of input
space by rules. Without the full coverage i.e. if the fuzzy
rule-base is sparse, some observation may exists from
which no conclusion can be deduced. The need of the

complete rule base leads to a rule base size exponentially
growing with to the number of the antecedent dimensions.
The reason of sparse fuzzy system can be the incomplete
knowledge which means that less information is available
about system than it would be required for complete rule
base. Or because of simple technical reasons, like in expert
systems, where only the important rules are defined
without taking care of the completeness, not mentioning
the deducible rules [21]. Moreover the full coverage is also
not desirable for performance reasons [19].
There are numerous fuzzy reasoning methods which can
handle sparse fuzzy rule-bases too. In common they are
called Fuzzy Rule Interpolation methods. They can
generate the Fuzzy conclusion from the existing rules by
fuzzy interpolation.
These methods can be classified into two groups depending
on fuzzy conclusion generation strategy: direct methods
(also called “one step method”), and “two steps methods”.
The two steps methods interpolate a temporary fuzzy rule
first, in the position of the observation, and then apply a
single fuzzy rule reasoning method to gain the shape of the
final fuzzy conclusion. One step methods generate the
fuzzy conclusion directly from the fuzzy observation in one
reasoning step.
In spite of the numerous implementations of the classical
fuzzy reasoning methods (e.g. Matlab Fuzzy Toolbox),
there are not so many publicly available fuzzy rule
interpolation software products. One exception is the
publicly available Fuzzy Rule Interpolation Toolbox for
Matlab introduced and developed by Johanyák et. al. [14],
[15].
The original goal of the FRI Toolbox development was the
comparison and visualization of the various FRI methods.
During the implementation the effective calculation and the
possibility of real-time application was a minor demand.
Unfortunately there is no commonly available
programming library until now, that can effectively support
the elaboration of a sparse fuzzy model based application.
So far there is no universally accepted common FRI
method for reasoning in case of sparse fuzzy knowledge
representation. On the other hand there are many FRI
methods already developed but none of them is commonly
accepted as a universal all purpose FRI method.

2

Therefore there is a need for a common framework in
which any of these methods can be used and can be
compared. By this time there were two solutions for this
problem. One of them is the direct implementation of the
FRI method based on the original source articles. The
developer had to implement the appropriate FRI method on
his/her own in a chosen programming language. It has
more disadvantages. Reimplementation is required when
the programming language is changing, more FRI methods
have to be implemented for comparison and it can be
difficult task because some methods are poorly
documented. The other alternative is the application of the
FRI Matlab Toolbox which was already implemented by
Johanyák at al. This special toolbox is a collection of “.m”
Matlab functions which can be run under the Matlab
environment. It is an easy to use and handy tool for
demonstration and research purposes, but its integration
into real application is troublesome. Although it is possible
to run Matlab function inside a C++ application, but it
requires an embedded interpreter code, and the “real time”
reasoning is also troublesome. This interpreted usage of the
“.m” Matlab code is not supported in any other
programming languages such as the .NET supported ones,
like the Java or Python. The function collection of the FRI
Toolbox does not work in other mathematical environment
and not even supports free simulation engines such as
FreeMat or Octave.
As a straightforward solution of the above problem we
have designed and implemented a new developer
framework for the FRI Toolbox.
The code was written in C++ in order to obtain low
reasoning time, however it can be used by any other recent
popular programming language such as .NET (C#,
VB.NET), Java, Python or Delphi. The C++ language is
supported natively and the other languages via dll
(Windows) or so (Linux) technology. More applications
can use our logic in shared way due to the address space of
the dll is shared among applications. Our logic can be used
directly as module of application or in assisted mode as
component of complex system. In the assisted usage our
logic manages the user's fuzzy systems and shares them
among more applications. We ship wrapper classes for
.NET, Java and Python for the reason of reducing the
development period and increasing the productivity.
Behind the scene these classes work in assisted mode
collaborating with dll.
FRI based automatic fuzzy system identification from
training data [21] and embedded FRI model applications
[23] are still ongoing research areas. For this reason our
primary goal was creating a handy component for
developer which can be used in case of sparse fuzzy
knowledge representation applications as a tool for creating
component configuration file and also for generating the
source code of component usage.
Building a common tool, at the first we would like to
support the Windows and Linux operating system. For
better performance we would like to give a quick native
library for C++ and a unified usage model to the other
recently used other programming languages. In case of

Mac OS the native library is supported but the assisted
usage will be migrated later due to the operating system
nature.
The rest of this paper is organized as follows. Section II
reviews the FRI methods and defines a general set of
criteria. Section III presents the structure and the usage of
the new Fuzzy Developer Library. Finally the last section
concludes the result and outlook the future research and
development.

II. The FRI Methods

In case of sparse fuzzy rule based knowledge
representation having a fuzzy observation, the fuzzy
conclusion can be gained by an FRI method. There is no
universally accepted common purpose FRI method exists at
the moment, however there are many FRI methods already
developed.
Every FRI methods have different features and different
constraints. The developer has to know all of these to be
able to make the correct decision for selecting a suitable
FRI method. Helping this selection we have to analyze the
existing FRI methods and a general set of criteria has to be
identified.
According to the classification of the FRI methods,
significant members of the direct method are the KH
method [6] introduced by Kóczy and Hirota, MACI [7]
(Tikk and Baranyi), FIVE [8] (Kovács and Kóczy), IMUL
[9] (Wong, Gedeon, and Tikk), and VKK method [10]
(Vass, Kalmár and Kóczy). The methods belonging to the
“two step method” group are introduced as generalized
methodology (GM) defined by Baranyi et al. in [11].
Significant methods of this group are the ST method [12]
(Yan, Mizumoto, and Qiao), the IGRV [13] developed by
Huang and Shen, and the technique proposed by Jenei [19].
The Fuzzy Rule Interpolation Matlab Toolbox (FRI TB) is
a collection of Matlab functions implementing interpolation
based fuzzy inference techniques introduced in [14]. These
functions are implemented in Matlab using internal Matlab
types and functions. The current version supports more FRI
methods (KH, the stabilized version of the KH, MACI,
IMUL, CRF, FIVE, VKK, GM with SCM, FERI, and FPL,
and GM with FEAT-p, FERI, and FPL). The whole toolbox
is available for download under GNU General Public
License from the web site [15]. The FRI Toolbox was
developed using Matlab 7 (R14) under Microsoft Windows
XP, and it is working under Windows 7 as well as Linux
system. It has graphical user interface. The user can set up
the details of the system and can choose an FRI method
which determines the conclusion. Similarly to the “Matlab
Fuzzy Logic Toolbox”, the inputs of the FRI TB is an
extended “.fis” file for the fuzzy rule and parameter
definition and an “.obs” for the fuzzy observation
definition. Differently from the “.fis” file of the “Matlab
Fuzzy Logic Toolbox”, the extended “.fis” file has some
additional parameters for enabling subnormal linguistic
terms (fuzzy sets with height less than 1). These files are
normal text files but there is a graphical editor of the FRI

3

TB which can be used for easy fuzzy set creation and
modification.
For selecting a proper FRI method, based on a general set
of FRI criteria, some requirements against the properties of
the applied FRI method has to be determined. There are
three main criteria sets can be found in the literature, in
[19], [16] and [24]. In this paper we recall the FRI criteria
introduced in [16] by D. Tikk et. al. These conditions are
the following:
Property 1 Avoidance of the invalid conclusion. Property 2
Keep the similarity. This means that similar observations
should lead to similar conclusions. Property 3 Preserving
the ”in between” relation. If the antecedent sets are
between two rules in observation, then the approximated
conclusion should be between the two correponding
consequent sets. Property 4 Compatibility with the rule
base. This condition requires the validity of the modus
ponent reasoning, i.e. if an observation coincides with the
antecedent part of a rule, the conclusion produced by the
method should correspond to the consequent part of that
rule. Property 5 Keep the fuzziness of the approximated
result. There are two opposite approaches in the literature
related to this topic. According to the first one in case of a
singleton observation the method should produce a
singleton consequence. The second approach specifies the
fuzziness of the estimated consequent from the nature of
the fuzzy rule base. The singleton can be expected only if
all the consequents of the rules taken into consideration in
the interpolation are singleton. Property 6 Approximation
stability. The estimated rule should approximate the
relationship between universes of the antecedent and
consequent with the highest possible degree. Property 7
Preserving the piece-wise linearity. If the fuzzy sets of the
rules taken into consideration are piece-wise linear, the
approximated sets should preserve this feature. Property 8
Applicability in case of multidimensional antecedent
universe. This condition indicates that an FRI technique
should present similar characteristics when being extended
and applied to multidimensional input spaces.
Property 9 Applicability without any constraint regarding
to the shape of the fuzzy sets. This condition can be
weakened practically to the case of piece-wise linear, and
Gauss-bell shaped fuzzy sets, being the most frequently
encountered in the applications.
Some methods of the FRI TB are evaluated against the
above criteria in [16].

III. FRI Developer Toolbox Library

There are three main requirements against the FRI
Developer Toolbox Library (FRI DTBL):

- Short reasoning time to be suitable for real time
application environment.

- Wide application area has to be supported (at least
Matlab, Freemat, Java, and C#).

- Standardized application interface for supporting
simple interchangeable application of the FRI
methods.

From the developers’ point of view the structure of the
framework should be easily extended. From the viewpoint
of the user, who just uses the existing FRI DTBL, requires
a common structure guaranteeing the interchangeability of
the FRI methods. The object oriented paradigm with proper
class hierarchy can ensure both requirements. In order to
meet these demands the existing FRI methods were
analyzed and the following criteria were identified:

- Same process steps are required for every FRI
method: system creation, initialization,
interpolation. Defining a pure virtual method for
these steps force the implementation and
guarantee the correct process flow.

- Some FRI methods have additional parameters
which determine the resolution and precision of
calculation (number of α cuts, number of polar
cuts, etc.). Introducing an additional method give
an opportunity to initialize the given FRI method,
but the usage of the FRI methods stay same and
universal.

- Every FRI method is a member of a “direct” or
“two step” method family, so two super classes
are required which will be the base class of any
class of FRI method.

For providing wide compatibility a programming library
(C++ lib), a dynamic loadable library (dll in case of
Windows and so file in case of Linux) and wrapper classes
for popular programming languages such as C#, Python
and Java were elaborated. In the FRI DTBL the usage of
the FRI methods should be unified, which means that any
FRI method can be connected via the same interface. The
structure of library and the objected oriented paradigm
ensure this unified FRI method usage.
The main goal of the FRI DTBL is simplifying the
standalone application development by providing
standardized library functions for the FRI reasoning. The

FRI DTBL provides two facilities for application: direct

application and assisted application.
The direct application means that our classes can be
directly instantiated and the method of the object can be
called without any mediator code. In this case the
developer's responsibility is to create, store and destroy the
FRI system. The creation and destruction are simple
memory operations. The developers can use a vector to
store the FRI system instances of classes. This provides
methods for getting the size of structures and iterators for
the ability to iterate through the elements of that range
using operators. These tasks have to be implemented
directly in applications, there is no need for a central place
for interchanging information among system components.
The assisted application means that all operations are
indirect. The user asks for a new FRI system with specified
parameters from our logic. Then the logic creates the
system, which will be stored in an internal list. Once the
FRI system becomes unnecessary, then the user has to ask
our logic to dispose it. In this case the user does not know
the place of system object, the creation and destruction are
simple function calls. The assisted usage is available from

4

any application, but the direct usage is available only from
C++ application. Developing the application in C++ and
linking our logic as static library is more efficiency and
reliable, because the C++ is an object oriented language,
which supports complex types.
If the user writes the application in C++, which include our
logic, both usages can be accessed, because the library
itself, as well as the small manager code are written in
C++. If the binary dll is used by any application, only then
the assisted usage is supported. If the pre-created wrapper
classes are used by any other code, then the assisted mode
can be available because the wrappers are using the dll.
The programming languages have many differences. The
representation of types in memory and the functional
possibilities can be different as well. Avoiding these
diversities we have implemented the dll in C because every
popular programming languages support the pure C written
dll. In our case the global functions of the C dll are
adapters, which convert the programming interface of
internal classes to simple functions. Behind the scenes
these functions are creating instances of internal classes
and communicating with the objects. Even if the C
language is widely supported, but it it can handle simple
types only, moreover it is not object oriented. Because of
the usage of the C dll between the user's logic and our
internal worker classes, the parameters of the methods have
to be simple types, such as double array, integer and
pointer (instead of the complex class instance pointer).
Handling these differences the adapter function contains
additional codes which build the appropriate objects
according to the simple parameter requirements. Usage of
the dll, which contains functions with simple parameters
only, requires precise code, because our logic can not
determine the size of array. There is no chance to
determine the array size in case of C language (particularly
in case of Matlab), so we had to introduce an extra
parameter for the array size. In case of wrong array size
value, a fatal error can be occurred. Therefore the correct
usage is the user's responsibility.
Our logic can handle multiple FRI system in the same time,
so it is also possible that the dll can be used side by side
from more applications at the same computer at the same
time. It is supported, because our logic stores the users' FRI
systems in an internal list and each request has an
additional parameter which identifies the corresponding
FRI system. This solution enables the existence of more
applications and more systems simultaneously. In case of
low level FRI DTBL usage (.lib file), by a proper C++
source the developer can instantiate our class and can
override our implementation. It is easy to extend the FRI
methods by deriving a new class from an existing one. For
compatibility reasons we have generated the .dll file from a
library which provides the programming language
independency. The implementation language of the dll is
simple C, due to compatibility issues, because it has to be
used by other execution contexts too, which can be
implemented in Delphi, or C#, or even in Java.

Summing up the comments, the direct application gives
more possibility as well, but it also requires more
responsibility, than the assisted application.
In accordance with general criteria related to the FRI
methods (enumerated in the previous section) the FRI
DTBL also try to check the prerequisites of the actual FRI
method and the properties of the fuzzy conclusion. At the
moment checking the Property 1 is only supported. To
extend the property evaluation abilities, new algorithms
have to be introduced. In case of direct usage and
unsupported FRI method prerequisites an exception is
thrown. In the assisted mode the exception handling is not
supported, so the return value of any method can be an
error code, which is a negative integer. We have defined
error codes and exceptions for every studied invalid
situation. If the method call is finished successfully, then
the return error value will be zero.

A. The Structure of the FRI DTBL

The core of toolbox is written in C++. Therefore, a lot of
classes are defined, where one class can relate to the other
by specialization, or simple usage. Our library supports
both FRI method families, the direct (one-step) methods
and the two-steps methods. Our system can also use the
same .fis file as MATLAB Fuzzy Toolbox does. The
content of the extended .fis file can also contains the user's
sparse system and the FRI method will determine the
conclusion according to this description.
In real circumstances the rules of the system do not change
frequently. In most cases more observations are tested
against the same FRI system. For the better performance,
the simple parameter of function is also supported as an
observation beyond the .obs file.
Commonly, all Fuzzy Interpolation Methods can have
additional input parameters, which can be used by
developer's code, such as number of the alpha levels. The
number and the type of parameters depends on the
specified FRI method, so method parameters are handled in
string format.
In FRI DTBL the CFRIMethod class is the direct or
indirect base class of all classes (see Fig.1, Fig.2). This
base class declares the common interface of all FRI
methods. From the user point of view, who wants to utilize
our library, same four steps are required for all of the FRI
methods:

1. System creation, in which the FRI system is
created from a string, or based on a .fis file.

2. FRI method creation, in which the system, created
in the previous step, is assigned to the
implementation of the appropriate FRI method. In
case of assisted usage the name of the method has
to be passed as a simple string parameter. Please
note that thereafter this step can be executed more
times with the setup method, so the interpolation
method can be also changed in runtime.

3. FRI method initialization, where the method can
get specified parameters. They will be used during
the determination of the conclusion. The init

5

method can get parameters from user at runtime,

which can modify the interpolate method.

4. Interpolation of the conclusion, in which the

interpolate method is called. This is the main step

of the FRI DTBL. It can be called more times in

case of direct real time applications.

Figure 1 The structure of the direct FRI method classes

In case of one-step methods (see Fig. 1), the class of the

actual FRI method has to be derived from the

COneStepMethod class. The COneStepMethod declares

only one pure virtual interpolate method, which has to be

implemented, overridden by the class of the new FRI

method. This method has to determine the conclusions

according to the given observation and the FRI system. The

observations are fetched from parameters, which is a vector

of Membership functions. The FRI DTBL already contains

implementation of the following one-step methods: KH

(CKK class), VKK (CVKK class) and FIVE (CFIVE class).

If a new FRI method is implemented, then the class of the

new FRI method has to be derived from COneStepMethod

and the interpolate method has to be overridden by the

conclusion directly (see CCustom1StepMethod on Fig. 1).

The other types of the supported FRI methods are the two-

steps methods (see Fig. 2), this case the actual class of the

FRI method has to be derived from CGeneralizedMethod

class. The actual FRI method class has to override three

methods: determineAntecedentShapes,

determineConsequentPositions and

determineConsequentShapes according to the steps of the

the General Methology [11]. These methods are called

from the CGeneralizedMethod class in this strict order

every time. The observations are also fetched from the

string representation of a vector of Membership functions.

The FRI DTBL already contains implementation of the

following two-steps methods: LESFRI (CLESFRI class),

VEIN (CVEIN class) and ST (CST class). If a new two-

steps FRI method is implemented, then the class of the new

FRI method has to be derived from CGeneralizedMethod

and the determineAntecedentShapes,

determineConsequentPositions and

determineConsequentShapes methods has to be overriden

(see CCustom2StepsMethod on Fig. 2).

Figure 2 The structure of two steps FRI method classes

B. Using the FRI DTBL

The new native library can be used in C++. This solution

produces the best performance, but more efforts are

needed. The dynamic library can be used with different

types of target languages, including common scripting

languages such as Perl, PHP, Python, Tcl and Ruby. The

list of supported languages also includes non-scripting

languages such as C#, Java, and Delphi. In this case the dll

can be used in assisted application.

One of our goal was to support the Matlab environment.

Matlab is a programming environment platform for

algorithm development, data analysis, visualization, and

numerical computation. The main advantage of its

application is the visualization and the strong mathematical

support. As an additional component, a Fuzzy Logic

Toolbox exists for developing a fuzzy system, but it is not

part of base system and it requires complete rule-base for

Fuzzy system. When a shared library is used in Matlab it

needs a header file, which provides signatures for the

functions in the library and the dll itself. A signature, or

function prototype, establishes the name of the function

and the number and types of its parameters. For the

application of the shared library, the full path and its header

file have to set up. Matlab accesses the C routines built into

external, shared libraries through a command-line interface.

This interface loads the external library into Matlab

memory and access the functions of the FRI toolbox dll.

Although types of the two languages are different, in most

cases types can be passed to the C functions without any

further conversion, as the Matlab do the type conversion

automatically.

During the application first the external C library is loaded

by the loadlibrary function. To check the success of the

loading the libfunctions function can be called next. Finally

the callib function can be used to call external function if

the previous steps finished without an error. The

argument(s) of the callib depends on the actual external

function.

The support for any free mathematical environment was

also a key element in our FRI DTBL development concept.

6

In the first step the FreeMat is supported. FreeMat [17] is a
free environment for rapid engineering and scientific
prototyping. It is similar to commercial systems such as
Matlab, but it is licensed as GPL Open Source.
In case of FreeMat the function of shared library can be
used by import function. We ship a text file which contains
the import for all defined functions. The signature of
import function is: import(libraryname, symbol, function,

return, arguments), where the argument libraryname is the
name of the library (as a string). In our case it is the
‘fritoolbox.dll’. The second argument ‘symbol’, is the name
of the symbol, the internal name of the global function. The
third argument of the function is the external name of the
function. The fourth argument is a string that specifies the
return type of the function.

III. Conclusion

Fuzzy rule interpolation techniques extend the applicability
of fuzzy rule based reasoning methods for the case when
the rule base is sparse or incomplete. This paper introduced
the design concepts of the FRI Toolbox Developer Library
(FRI DTBL) which is freely available public programming
library. The main reason of the FRI DTBL development
was the direct support for embedded applications of FRI
methods in standalone real environment applications.
The FRI DTBL can be used by any recent popular
programming languages. It can be extended easily with any
kind of new FRI method. Our library has a short reasoning
time so it can be also used in any application including
Matlab and FreMath mathematical environments as well.
Our framework is suggested for system developers who
want to create real environmental applications.
In the future more FRI methods will be integrated and a
new benchmark system will be set up within the FRI DTBL
framework for testing the fulfillment of the FRI criteria.

ACKNOWLEDGMENTS

This research was partly supported by the Hungarian
National Scientific Research Fund grant no: OTKA
K77809, by International Cooporation Program (Sister
Univ.) of the Hanbat National University, S. Korea, and by
the Hungarian National Development Agency and the
TÁMOP-4.2.2.B/10/1-2010-0008 project with support by
the European Union, co-financed by the European Social
Fund.

REFERENCES

[1] L. A. Zadeh, “Outline of a new approach to the analysis of
complex systems and decision processes”, IEEE Trans. on SMC, (3),
pp.28-44, 1973.

[2] E. H. Mamdani and S. Assilian, “An experiment in linguistic
synthesis with a fuzzy logic controller”, Int. J. of Man Machine
Studies, (7), pp.1-13, 1975.

[3] P. M. Larsen, “Industrial application of fuzzy logic control”, Int.
J. of Man Machine Studies, (12) 4, pp.3-10, 1980.

[4] M. Sugeno, “An introductory survey of fuzzy control”,
Information Science, (36), pp.59-83, 1985.

[5] T. Takagi and M. Sugeno, “Fuzzy identification of systems and
its applications to modeling and control”, IEEE Trans. on SMC, (15),
pp.116-132, 1985.

[6] L. T. Kóczy and K. Hirota, “Rule interpolation by α-level sets in
fuzzy approximate reasoning,” BUSEFAL, vol. 46, no. Automne, pp.
115–123, 1991.

[7] D. Tikk and P. Baranyi, “Comprehensive analysis of a new
fuzzy rule interpolation method,” IEEE Trans. On Fuzzy Systems,
vol. 8, no. 3, pp. 281–296, 2000.

[8] S. Kovács and L. T. Kóczy, “Application of an approximate
fuzzy logic controller in an agv steering system, path tracking and
collision avoidance strategy,” Tatra Mountains Math. Publ., vol. 16,
pp. 456–467, 1999.

[9] K. W. Wong, T. D. Gedeon, and D. Tikk, “An improved
multidimensional α-cut based fuzzy interpolation technique,” in Proc.
of the Int. Conf. on Artificial Intelligence in Science and Technology
(AISAT’00), V. Karri and M. Negnevitsky, Eds., Hobart, Tasmania,
Australia, December, 2000, pp. 33–38.

[10] G. Vass, L. Kalmár, and L. T. Kóczy, “Extension of the fuzzy
rule interpolation method,” in Proc. of the Int. Conf. on Fuzzy Sets
Theory and its Applications (FSTA’92), Liptovsk´ y Jan, Slovakia,
1992, pp. 1–6.

[11] P. Baranyi, L. T. Kóczy, and T. D. Gedeon, “A generalized
concept for fuzzy rule interpolation,” IEEE Trans. on Fuzzy Systems,
vol. 12, no. 6, pp. 820–837, December 2004.

[12] S. Yan, M. Mizumoto, and W. Z. Qiao, “An improvement to
Kóczy and Hirota’s interpolative reasoning in sparse fuzzy rule
bases,” Int. J. of Approximate Reasoning, vol. 15, pp. 185–201, 1996.

[13] Z. H. Huang and Q. Shen, “Fuzzy interpolation with generalized
representative values,” in Proc. of the UK Workshop on
Computational Intelligence, Loughborough, UK, September, 2004,
pp. 161–171.

[14] Z. C. Johanyák, D. Tikk, S. Kovács, and K. W. Wong, “Fuzzy
rule interpolation Matlab toolbox – FRI toolbox,” in Proc. of the
IEEE World Congress on Computational Intelligence (WCCI’06),
15th Int. Conf. on Fuzzy Systems (FUZZ-IEEE’06). Vancouver, BC,
Canada: Omnipress, July 16–21, 2006, pp. 1427–1433.

[15] Z. Johanyák. Fuzzy Rule Interpolation Matlab Toolbox website.
[Online]. Available: http://fri.gamf.hu

[16] D. Tikk, Z. C. Johanyák, S. Kovács, and K. W. Wong, “Fuzzy
rule interpolation and extrapolation techniques: Criteria and
evaluation guidelines,” Journal of Advanced Computational
Intelligence and Intelligent Informatics, vol. 15, pp. 254–263, 2011.

[17] Freemat website. [Online]. Available:
http://freemat. sourceforge.net

[18] Kóczy, L. T., Hirota, K.: Size reduction by interpolation in
fuzzy rule bases, IEEE Trans. on SMC, 1997, 27:14–25.

[19] S. Jenei, “Interpolating and extrapolating fuzzy quantities
revisited – an axiomatic approach”, Soft Comput., vol. 5., pp. 179-
193, 2001.

[20] S. Jenei, E. P. Klement and R. Konzel, “Interpolation and
extrapolation of fuzzy quantities – The multiple-dimensional case”,
Soft Comput., vol. 6., 258-270, 2002.

[21] Sz. Kovács, “Interpolative Fuzzy Reasoning in Behaviour-based
Control”, Advances in Soft Computing, Vol. 2, Computational
Intelligence, Theory and Applications, Bernd Reusch (Ed.), Springer,
Germany, ISBN 3-540-22807-1, pp.159-170, 2005.

[22] Zs. Cs. Johanyák, “Sparse fuzzy model identification Matlab
toolbox - RuleMaker toolbox”, Proceedings of IEEE 6th International
Conference on Computational Cybernetics ICCC, Stara Lesná,
Slovakia, pp. 69-74, 2008.

[23] D. Vincze, Sz. Kovács, M. Gácsi, P. Korondi, Á. Miklósi, P.
Baranyi: A Novel Application of the 3D VirCA Environment:
Modeling a Standard Ethological Test of Dog-Human Interactions,
Acta Polytechnica Hungarica, Vol. 9, No. 1, ISSN 1785-8860, pp.
107-120, 2012.

[24] I. Perfilieva, et al., “Interpolation of fuzzy data: Analytical
approach and overview”, Fuzzy Sets and Systems,
doi:10.1016/j.fss.2010.08.005, 2010.

